Printed Pages: 3

NEC-403

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 131403-N

Roll No.

B. Tech.

(SEM. IV) THEORY EXAMINATION, 2014-15 ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

Time: 3 Hours]

[Total Marks: 100

Note:

- (1) Attempt all questions.
- (2) All questions carry equal marks.
- 1 Attempt any four parts:

 $5 \times 4 = 20$

(a) Define measurement. Calculate percentage error in determination of time period of a pendulum given by

$$T=2\pi\sqrt{\frac{1}{g}}$$

Where 1 and g are measured in $\pm 2\%$ and $\pm 3\%$ errors.

- (b) Differentiate between Gross errors and Systematic errors. List a few ways of minimizing the effect of errors in measurement.
- (c) A batch of resistors that each have a nominal resistance of $330\,\Omega$ are to be tested and classified as \pm 10 % components at 25 °C. If their temperature coefficient is -300ppm/ °C, calculate the maximum and minimum resistance for these components at $100\,^{\circ}$ C.

- (d) A thin wire has a length of 21.7 cm and radius 0.46 cm. Calculate the volume of the wire correct to required significant figures.
- (e) Explain the construction of a PMMC instrument. Mathematically prove that the scale of such an instrument is linear.
- (f) Explain the concept of Swamping resistance. What are the materials generally used for manufacturing these resistances.

2 Attempt any four parts:

5×4=20

- (a) What do you mean by Loading Effect? How does electronic voltmeter help in minimizing the loading effect?
- (b) Draw and explain the FET input voltmeter circuit with range changing.
- (c) Explain the -working of precision rectifier based voltmeters.
- (d) A Half wave rectifier Op-Amp based voltage amplifier circuit has a feedback resistance of $2.4k\Omega$ and a resistance between the ground and the inverting terminal of $4.9k\Omega$. If the r.m.s. input voltage to be measured is 89.40 rnV at the FSD of the deflection instrument with Rs = 100Ω and Rin = 200Ω . Find the FSD of the meter.
- (e) Write a short note on multimeter probes.
- (f) Draw and explain the block diagram of a Digital Frequency meter system.

 $10 \times 2 = 20$

- (a) Give numerical example to explain the sensitivity of a Wheatstone bridge. What is the main advantage of using Kelvin's bridge over Wheatstone bridge?
- (b) Explain how AC bridges are balanced with proper phase diagrams. Derive the expressions of converting series inductor circuits into parallel equivalent circuits.
- (c) Write the mathematical expressions for inductor Q-factor and capacitor D-factor. Explain the working of inductance Comparison Bridge.

4 Attempt any two parts:

 $10 \times 2 = 20$

- (a) Draw and explain the block diagram of Oscilloscope automatic time base with proper waveforms at the output of each block.
- (b) Explain the operation of Sampling Oscilloscopes. Also explain individual circuits of staircase generator and sampling gate.
- (c) What do you mean by interpolation? Briefly explain the operation of a DSO storage and display system.

5 Attempt any two parts:

10×2=20

- (a) On what factors does the frequency of instrumentation calibration depend? Explain how A.C. voltmeter calibration can be done.
- (b) Discuss how D.C. source and Potentiometer may be developed in laboratories for calibration purpose.
- (c) Write a short note on working and applications of X-Y plotter.